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Abstract— Logistics is a time and cost intensive task in indus-
try. Great expense is done in the purpose of inventory. To reduce
the effort we present an inventory drone prototype developed to
demonstrate the feasibility of vision-based navigation inside in-
dustrial warehouse facilities with highly repetitive visual struc-
ture. Model-based visual localization against a precomputed
map of the environment is used to estimate and compensate
the drift of a commercially available odometry sensor and to
achieve cm-accurate navigation. Our experiments showcase the
capabilities of our prototype for vision-based precise indoor
navigation and autonomous inventory. All computations are
performed on-board the drone.

I. INTRODUCTION

Nowadays there are still challenges limiting the usage
of drones for indoor industrial applications, for instance:
the lack of global localization, electromagnetic interference,
constrained space and repetitive structure in industrial envi-
ronments. Thus accurate and global indoor localization and
navigation is an active research topic.

In this work, we present a on-board solution for vision-
based localization in global coordinates including odometry
drift compensation that achieves cm-accurate navigation. In
contrast to Beul et al. [1], where a LIDAR sensor is utilized,
we focus on a vision-based solution for the localization
and navigation problem and on performing the inventory
identification using barcodes, rather than RFID tags.

II. METHODOLOGY

The core idea of our proposed solution to achieve precise
navigation indoors is to fuse model-based visual localiza-
tion estimates and the odometry provided by an on-board
odometry sensor. As the reference model, depicted in blue
in Fig. 1, is metric and has a defined coordinate system,
we additionally gain the benefits of localizing in global
coordinates, as it is the case outdoors when relying on a
Global Navigation Satellite System (GNSS).

To achieve the localization we exploit only the images
of a single low resolution camera of the odometry sensor.
In preprocessing, the reference model is generated from
previously acquired images by using a Structure from Motion
approach [2], [3]. Then, during operation the acquired images
are localized against the reference model (see Fig. 1). SIFT
features are extracted and matched against features of the
model. In order to speed up the localization we propagate
the current pose according to the odometry estimates and
reduce the complexity of matching by only considering
nearby reference cameras of the model. Further speed-ups
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Fig. 1. Principle of vision based real-time localization. The reference
model, depicted in blue, is used to localize in real-time. Features of the
current image are matched to features of the model’s reference images.
The feature matching is limited to reference images in the surroundings
of the pose hypothesis provided by propagating the odometry starting at
the last estimated pose. This results in 2D-3D correspondences that are
used to determine the current pose. Reference cameras in the vicinity that
provide correspondences are depicted in green, cameras that would provide
correspondences but are not close by are colored orange and cameras
without any matching features are black. Top-left: Camera image with
reprojected reference model and last detected barcode position.

are achieved by tree-based feature matching and GPU-based
feature extraction. The matched features implicitly lead to
2D-3D correspondences and the current camera pose is
determined using a robust version of the 3-point algorithm.

In order to be able to exploit the odometry position and
speed estimates to control the drone, we robustly estimate the
drift with regards to the reference model of the odometry
provided by the on-board sensor. The odometry drift esti-
mation is performed in real-time at very low computational
cost. The drift is estimated through a mean calculation over
the latest 6 seconds of time-synchronized camera poses and
corresponding odometry data. Outliers from the model-based
visual localization are filtered using RANSAC. The proposed
method enables the compensation of the odometry sensor
drift and achieves cm-precise localization.

The controller uses the drift-corrected odometry position
and speed estimates as feedback and the acceleration, speed
and position of the reference trajectory as feedforward and
control setpoints. The reference trajectories are calculated by
interpolating a smoothed third order spline over the sequence
of desired waypoints.

The barcodes are decoded using the ZXing open-source
library1.

1https://github.com/glassechidna/zxing-cpp



III. EXPERIMENTS AND RESULTS

In this section we demonstrate the capabilities of our
proposed system by showing the effectiveness of our vision-
based drift compensation and summarize our results of
autonomous inventory experimental flights.

As development platform we are using a DJI M-100
equipped with a DJI Guidance sensing system [4] for visual
odometry that replaces GNSS in indoor scenarios and a Ma-
trix Vision BlueFox3-M1100g (10 Mpx) with a 50 mm focal
length lens for barcode reading. The on-board processing is
performed on the DJI Manifold (NVIDIA Jetson TK1).

A. Drift Compensation

In indoor scenarios on-board odometry sensors are ef-
fected by drift and, if the magnetic compass is fused,
by magnetic interferences, which are typical in industrial
environments. These deflections can be seen in Fig. 2 in the
odometry delivered by the sensor (red curve). We measured
a heading drift of 12 deg, which can definitely lead to
collisions over long term flight. Thus we exploit our model-
based visual localization and robustly fuse the result with
the odometry to obtain drift free localization and speed
estimates, which enable flying at a constant distance, in
Y-direction, to the storage racks (see green curve in Fig 2)
with an accurate trajectory tracking error of σ = 0.81 cm at
0.125 m/s and of σ = 1.30 cm at 0.55 m/s navigation speed.

Odometry sensor estimates are affected by:

Slow position and orientation drift

Magnetic interference (common case
inside buildings)
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Fig. 2. Odometry delivered by the odometry sensor compared to our drift
compensated estimates. Top-right: Odometry drift accumulates particularly
in some events such as take-off and landing. Bottom: The magnetic
interference causes a slow drift on the heading over long periods of time.

B. Results of the Autonomous Inventory

We show the accuracy of our navigation by the success
of the system on reading inventory barcodes of 110 mm
length. Thus, we define the constraints to successfully decode
a barcode. The inspection camera acquires images of vertical
barcodes at a working distance of 1.8 m with a depth of
field of 125 mm. At this distance the image spans vertically
225.4 mm and has a resolution of 15.1 px/mm. As we sweep
horizontally we only have to consider the field of view in
vertical direction. Based on these numbers we can derive the
accuracy constraints for the navigation:

Inspection camera
Scanning area

Fig. 3. Positions of detected barcodes on reference model: The colored
markers represent the estimated positions of the decoded barcodes for the
5 performed flights. Different colors represent different barcodes. Only the
first successful detection of each barcode is considered. Top-right: Field of
view of inspection camera and barcode reading constraints.

• vertical tolerance: ±57.7 mm
• distance tolerance: ±62.5 mm
• tilt tolerance: ±1.84 deg
We distributed 15 inventory tags with barcodes on the

flight area and performed 5 flights2. The inventory drone
prototype was able to decode 73 out of 75 barcodes suc-
cessfully, which shows the precision and repeatability of
our navigation. The achieved positioning accuracy of the
barcodes in 3D in these flights has a standard deviation of
1.92 cm. Fig 3 shows the individual positions of each barcode
clustered by color.

IV. CONCLUSIONS
We presented a solution to achieve vision-based localiza-

tion in global coordinates with odometry drift compensation
using a commercially available odometry sensor. In flight ex-
periments we demonstrated the capabilities of our approach
and achieved cm-accurate localization, navigation and posi-
tion estimation of the inventory barcodes. All computations
are performed on-board on our inventory drone prototype.
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2Video of one experiment:
https://files.icg.tugraz.at/f/17869e064fc44326a6e0/
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